bigfraction.js 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. /**
  2. * @license Fraction.js v4.1.2 23/05/2021
  3. * https://www.xarg.org/2014/03/rational-numbers-in-javascript/
  4. *
  5. * Copyright (c) 2021, Robert Eisele (robert@xarg.org)
  6. * Dual licensed under the MIT or GPL Version 2 licenses.
  7. **/
  8. /**
  9. *
  10. * This class offers the possibility to calculate fractions.
  11. * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
  12. *
  13. * Array/Object form
  14. * [ 0 => <nominator>, 1 => <denominator> ]
  15. * [ n => <nominator>, d => <denominator> ]
  16. *
  17. * Integer form
  18. * - Single integer value
  19. *
  20. * Double form
  21. * - Single double value
  22. *
  23. * String form
  24. * 123.456 - a simple double
  25. * 123/456 - a string fraction
  26. * 123.'456' - a double with repeating decimal places
  27. * 123.(456) - synonym
  28. * 123.45'6' - a double with repeating last place
  29. * 123.45(6) - synonym
  30. *
  31. * Example:
  32. *
  33. * let f = new Fraction("9.4'31'");
  34. * f.mul([-4, 3]).div(4.9);
  35. *
  36. */
  37. (function(root) {
  38. "use strict";
  39. // Set Identity function to downgrade BigInt to Number if needed
  40. if (!BigInt) BigInt = function(n) { return n; };
  41. const C_ONE = BigInt(1);
  42. const C_ZERO = BigInt(0);
  43. const C_TEN = BigInt(10);
  44. const C_TWO = BigInt(2);
  45. const C_FIVE = BigInt(5);
  46. // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
  47. // Example: 1/7 = 0.(142857) has 6 repeating decimal places.
  48. // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
  49. const MAX_CYCLE_LEN = BigInt(2000);
  50. // Parsed data to avoid calling "new" all the time
  51. const P = {
  52. "s": C_ONE,
  53. "n": C_ZERO,
  54. "d": C_ONE
  55. };
  56. function createError(name) {
  57. function errorConstructor() {
  58. const temp = Error.apply(this, arguments);
  59. temp['name'] = this['name'] = name;
  60. this['stack'] = temp['stack'];
  61. this['message'] = temp['message'];
  62. }
  63. /**
  64. * Error constructor
  65. *
  66. * @constructor
  67. */
  68. function IntermediateInheritor() { }
  69. IntermediateInheritor.prototype = Error.prototype;
  70. errorConstructor.prototype = new IntermediateInheritor();
  71. return errorConstructor;
  72. }
  73. const DivisionByZero = Fraction['DivisionByZero'] = createError('DivisionByZero');
  74. const InvalidParameter = Fraction['InvalidParameter'] = createError('InvalidParameter');
  75. function assign(n, s) {
  76. try {
  77. n = BigInt(n);
  78. } catch (e) {
  79. throw new InvalidParameter();
  80. }
  81. return n * s;
  82. }
  83. function factorize(num) {
  84. var factors = {};
  85. var n = num;
  86. var i = C_TWO;
  87. var s = C_FIVE - C_ONE;
  88. while (s <= n) {
  89. while (n % i === C_ZERO) {
  90. n /= i;
  91. factors[i] = (factors[i] || C_ZERO) + C_ONE;
  92. }
  93. s += C_ONE + C_TWO * i++;
  94. }
  95. if (n !== num) {
  96. if (n > 1)
  97. factors[n] = (factors[n] || C_ZERO) + C_ONE;
  98. } else {
  99. factors[num] = (factors[num] || C_ZERO) + C_ONE;
  100. }
  101. return factors;
  102. }
  103. const parse = function(p1, p2) {
  104. let n = C_ZERO, d = C_ONE, s = C_ONE;
  105. if (p1 === undefined || p1 === null) {
  106. /* void */
  107. } else if (p2 !== undefined) {
  108. n = BigInt(p1);
  109. d = BigInt(p2);
  110. s = n * d;
  111. } else if (typeof p1 === "object") {
  112. if ("d" in p1 && "n" in p1) {
  113. n = BigInt(p1["n"]);
  114. d = BigInt(p1["d"]);
  115. if ("s" in p1)
  116. n *= BigInt(p1["s"]);
  117. } else if (0 in p1) {
  118. n = BigInt(p1[0]);
  119. if (1 in p1)
  120. d = BigInt(p1[1]);
  121. } else if (p1 instanceof BigInt) {
  122. n = BigInt(p1);
  123. } else {
  124. throw new InvalidParameter();
  125. }
  126. s = n * d;
  127. } else if (typeof p1 === "bigint") {
  128. n = p1;
  129. s = p1;
  130. d = BigInt(1);
  131. } else if (typeof p1 === "number") {
  132. if (isNaN(p1)) {
  133. throw new InvalidParameter();
  134. }
  135. if (p1 < 0) {
  136. s = -C_ONE;
  137. p1 = -p1;
  138. }
  139. if (p1 % 1 === 0) {
  140. n = BigInt(p1);
  141. } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
  142. let z = 1;
  143. let A = 0, B = 1;
  144. let C = 1, D = 1;
  145. let N = 10000000;
  146. if (p1 >= 1) {
  147. z = 10 ** Math.floor(1 + Math.log10(p1));
  148. p1 /= z;
  149. }
  150. // Using Farey Sequences
  151. while (B <= N && D <= N) {
  152. let M = (A + C) / (B + D);
  153. if (p1 === M) {
  154. if (B + D <= N) {
  155. n = A + C;
  156. d = B + D;
  157. } else if (D > B) {
  158. n = C;
  159. d = D;
  160. } else {
  161. n = A;
  162. d = B;
  163. }
  164. break;
  165. } else {
  166. if (p1 > M) {
  167. A += C;
  168. B += D;
  169. } else {
  170. C += A;
  171. D += B;
  172. }
  173. if (B > N) {
  174. n = C;
  175. d = D;
  176. } else {
  177. n = A;
  178. d = B;
  179. }
  180. }
  181. }
  182. n = BigInt(n) * BigInt(z);
  183. d = BigInt(d);
  184. } else if (isNaN(p1)) {
  185. d = n = NaN;
  186. }
  187. } else if (typeof p1 === "string") {
  188. let ndx = 0;
  189. let v = C_ZERO, w = C_ZERO, x = C_ZERO, y = C_ONE, z = C_ONE;
  190. let match = p1.match(/\d+|./g);
  191. if (match === null)
  192. throw new InvalidParameter()
  193. if (match[ndx] === '-') {// Check for minus sign at the beginning
  194. s = -C_ONE;
  195. ndx++;
  196. } else if (match[ndx] === '+') {// Check for plus sign at the beginning
  197. ndx++;
  198. }
  199. if (match.length === ndx + 1) { // Check if it's just a simple number "1234"
  200. w = assign(match[ndx++], s);
  201. } else if (match[ndx + 1] === '.' || match[ndx] === '.') { // Check if it's a decimal number
  202. if (match[ndx] !== '.') { // Handle 0.5 and .5
  203. v = assign(match[ndx++], s);
  204. }
  205. ndx++;
  206. // Check for decimal places
  207. if (ndx + 1 === match.length || match[ndx + 1] === '(' && match[ndx + 3] === ')' || match[ndx + 1] === "'" && match[ndx + 3] === "'") {
  208. w = assign(match[ndx], s);
  209. y = C_TEN ** BigInt(match[ndx].length);
  210. ndx++;
  211. }
  212. // Check for repeating places
  213. if (match[ndx] === '(' && match[ndx + 2] === ')' || match[ndx] === "'" && match[ndx + 2] === "'") {
  214. x = assign(match[ndx + 1], s);
  215. z = C_TEN ** BigInt(match[ndx + 1].length) - C_ONE;
  216. ndx += 3;
  217. }
  218. } else if (match[ndx + 1] === '/' || match[ndx + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
  219. w = assign(match[ndx], s);
  220. y = assign(match[ndx + 2], C_ONE);
  221. ndx += 3;
  222. } else if (match[ndx + 3] === '/' && match[ndx + 1] === ' ') { // Check for a complex fraction "123 1/2"
  223. v = assign(match[ndx], s);
  224. w = assign(match[ndx + 2], s);
  225. y = assign(match[ndx + 4], C_ONE);
  226. ndx += 5;
  227. }
  228. if (match.length <= ndx) { // Check for more tokens on the stack
  229. d = y * z;
  230. s = /* void */
  231. n = x + d * v + z * w;
  232. } else {
  233. throw new InvalidParameter();
  234. }
  235. } else {
  236. throw new InvalidParameter();
  237. }
  238. if (d === C_ZERO) {
  239. throw new DivisionByZero();
  240. }
  241. P["s"] = s < C_ZERO ? -C_ONE : C_ONE;
  242. P["n"] = n < C_ZERO ? -n : n;
  243. P["d"] = d < C_ZERO ? -d : d;
  244. };
  245. function modpow(b, e, m) {
  246. let r = C_ONE;
  247. for (; e > C_ZERO; b = (b * b) % m, e >>= C_ONE) {
  248. if (e & C_ONE) {
  249. r = (r * b) % m;
  250. }
  251. }
  252. return r;
  253. }
  254. function cycleLen(n, d) {
  255. for (; d % C_TWO === C_ZERO;
  256. d /= C_TWO) {
  257. }
  258. for (; d % C_FIVE === C_ZERO;
  259. d /= C_FIVE) {
  260. }
  261. if (d === C_ONE) // Catch non-cyclic numbers
  262. return C_ZERO;
  263. // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
  264. // 10^(d-1) % d == 1
  265. // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
  266. // as we want to translate the numbers to strings.
  267. let rem = C_TEN % d;
  268. let t = C_ONE;
  269. for (; rem !== C_ONE; t++) {
  270. rem = rem * C_TEN % d;
  271. if (t > MAX_CYCLE_LEN)
  272. return C_ZERO; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
  273. }
  274. return t;
  275. }
  276. function cycleStart(n, d, len) {
  277. let rem1 = C_ONE;
  278. let rem2 = modpow(C_TEN, len, d);
  279. for (let t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
  280. // Solve 10^s == 10^(s+t) (mod d)
  281. if (rem1 === rem2)
  282. return BigInt(t);
  283. rem1 = rem1 * C_TEN % d;
  284. rem2 = rem2 * C_TEN % d;
  285. }
  286. return 0;
  287. }
  288. function gcd(a, b) {
  289. if (!a)
  290. return b;
  291. if (!b)
  292. return a;
  293. while (1) {
  294. a %= b;
  295. if (!a)
  296. return b;
  297. b %= a;
  298. if (!b)
  299. return a;
  300. }
  301. }
  302. /**
  303. * Module constructor
  304. *
  305. * @constructor
  306. * @param {number|Fraction=} a
  307. * @param {number=} b
  308. */
  309. function Fraction(a, b) {
  310. if (!(this instanceof Fraction)) {
  311. return new Fraction(a, b);
  312. }
  313. parse(a, b);
  314. a = gcd(P["d"], P["n"]); // Abuse a
  315. this["s"] = P["s"];
  316. this["n"] = P["n"] / a | C_ZERO;
  317. this["d"] = P["d"] / a | C_ZERO;
  318. }
  319. Fraction.prototype = {
  320. "s": C_ONE,
  321. "n": C_ZERO,
  322. "d": C_ONE,
  323. /**
  324. * Calculates the absolute value
  325. *
  326. * Ex: new Fraction(-4).abs() => 4
  327. **/
  328. "abs": function() {
  329. return new Fraction(this["n"], this["d"]);
  330. },
  331. /**
  332. * Inverts the sign of the current fraction
  333. *
  334. * Ex: new Fraction(-4).neg() => 4
  335. **/
  336. "neg": function() {
  337. return new Fraction(-this["s"] * this["n"], this["d"]);
  338. },
  339. /**
  340. * Adds two rational numbers
  341. *
  342. * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
  343. **/
  344. "add": function(a, b) {
  345. parse(a, b);
  346. return new Fraction(
  347. this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
  348. this["d"] * P["d"]
  349. );
  350. },
  351. /**
  352. * Subtracts two rational numbers
  353. *
  354. * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
  355. **/
  356. "sub": function(a, b) {
  357. parse(a, b);
  358. return new Fraction(
  359. this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
  360. this["d"] * P["d"]
  361. );
  362. },
  363. /**
  364. * Multiplies two rational numbers
  365. *
  366. * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
  367. **/
  368. "mul": function(a, b) {
  369. parse(a, b);
  370. return new Fraction(
  371. this["s"] * P["s"] * this["n"] * P["n"],
  372. this["d"] * P["d"]
  373. );
  374. },
  375. /**
  376. * Divides two rational numbers
  377. *
  378. * Ex: new Fraction("-17.(345)").inverse().div(3)
  379. **/
  380. "div": function(a, b) {
  381. parse(a, b);
  382. return new Fraction(
  383. this["s"] * P["s"] * this["n"] * P["d"],
  384. this["d"] * P["n"]
  385. );
  386. },
  387. /**
  388. * Clones the actual object
  389. *
  390. * Ex: new Fraction("-17.(345)").clone()
  391. **/
  392. "clone": function() {
  393. return new Fraction(this);
  394. },
  395. /**
  396. * Calculates the modulo of two rational numbers - a more precise fmod
  397. *
  398. * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
  399. **/
  400. "mod": function(a, b) {
  401. if (a === undefined) {
  402. return new Fraction(this["s"] * this["n"] % this["d"], 1);
  403. }
  404. parse(a, b);
  405. if (0 === P["n"] && 0 === this["d"]) {
  406. Fraction(0, 0); // Throw DivisionByZero
  407. }
  408. /*
  409. * First silly attempt, kinda slow
  410. *
  411. return that["sub"]({
  412. "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
  413. "d": num["d"],
  414. "s": this["s"]
  415. });*/
  416. /*
  417. * New attempt: a1 / b1 = a2 / b2 * q + r
  418. * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
  419. * => (b2 * a1 % a2 * b1) / (b1 * b2)
  420. */
  421. return new Fraction(
  422. this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
  423. P["d"] * this["d"]
  424. );
  425. },
  426. /**
  427. * Calculates the fractional gcd of two rational numbers
  428. *
  429. * Ex: new Fraction(5,8).gcd(3,7) => 1/56
  430. */
  431. "gcd": function(a, b) {
  432. parse(a, b);
  433. // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
  434. return new Fraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
  435. },
  436. /**
  437. * Calculates the fractional lcm of two rational numbers
  438. *
  439. * Ex: new Fraction(5,8).lcm(3,7) => 15
  440. */
  441. "lcm": function(a, b) {
  442. parse(a, b);
  443. // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
  444. if (P["n"] === C_ZERO && this["n"] === C_ZERO) {
  445. return new Fraction;
  446. }
  447. return new Fraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
  448. },
  449. /**
  450. * Gets the inverse of the fraction, means numerator and denominator are exchanged
  451. *
  452. * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
  453. **/
  454. "inverse": function() {
  455. return new Fraction(this["s"] * this["d"], this["n"]);
  456. },
  457. /**
  458. * Calculates the fraction to some integer exponent
  459. *
  460. * Ex: new Fraction(-1,2).pow(-3) => -8
  461. */
  462. "pow": function(a, b) {
  463. parse(a, b);
  464. // Trivial case when exp is an integer
  465. if (P['d'] === C_ONE) {
  466. if (P['s'] < C_ZERO) {
  467. return new Fraction((this['s'] * this["d"]) ** P['n'], this["n"] ** P['n']);
  468. } else {
  469. return new Fraction((this['s'] * this["n"]) ** P['n'], this["d"] ** P['n']);
  470. }
  471. }
  472. // Negative roots become complex
  473. // (-a/b)^(c/d) = x
  474. // <=> (-1)^(c/d) * (a/b)^(c/d) = x
  475. // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x
  476. // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula
  477. // From which follows that only for c=0 the root is non-complex
  478. if (this['s'] < C_ZERO) return null;
  479. // Now prime factor n and d
  480. var N = factorize(this['n']);
  481. var D = factorize(this['d']);
  482. // Exponentiate and take root for n and d individually
  483. var n = C_ONE;
  484. var d = C_ONE;
  485. for (var k in N) {
  486. if (k === '1') continue;
  487. if (k === '0') {
  488. n = C_ZERO;
  489. break;
  490. }
  491. N[k]*= P['n'];
  492. if (N[k] % P['d'] === C_ZERO) {
  493. N[k]/= P['d'];
  494. } else return null;
  495. n*= BigInt(k) ** N[k];
  496. }
  497. for (var k in D) {
  498. if (k === '1') continue;
  499. D[k]*= P['n'];
  500. if (D[k] % P['d'] === C_ZERO) {
  501. D[k]/= P['d'];
  502. } else return null;
  503. d*= BigInt(k) ** D[k];
  504. }
  505. if (P['s'] < C_ZERO) {
  506. return new Fraction(d, n);
  507. }
  508. return new Fraction(n, d);
  509. },
  510. /**
  511. * Check if two rational numbers are the same
  512. *
  513. * Ex: new Fraction(19.6).equals([98, 5]);
  514. **/
  515. "equals": function(a, b) {
  516. parse(a, b);
  517. return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
  518. },
  519. /**
  520. * Check if two rational numbers are the same
  521. *
  522. * Ex: new Fraction(19.6).equals([98, 5]);
  523. **/
  524. "compare": function(a, b) {
  525. parse(a, b);
  526. let t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
  527. return (C_ZERO < t) - (t < C_ZERO);
  528. },
  529. /**
  530. * Calculates the ceil of a rational number
  531. *
  532. * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
  533. **/
  534. "ceil": function(places) {
  535. places = 10 ** Number(places || 0);
  536. return new Fraction(Math.ceil(places * Number(this["s"] * this["n"]) / Number(this["d"])), places);
  537. },
  538. /**
  539. * Calculates the floor of a rational number
  540. *
  541. * Ex: new Fraction('4.(3)').floor() => (4 / 1)
  542. **/
  543. "floor": function(places) {
  544. places = 10 ** Number(places || 0);
  545. return new Fraction(Math.floor(places * Number(this["s"] * this["n"]) / Number(this["d"])), places);
  546. },
  547. /**
  548. * Rounds a rational numbers
  549. *
  550. * Ex: new Fraction('4.(3)').round() => (4 / 1)
  551. **/
  552. "round": function(places) {
  553. places = 10 ** Number(places || 0);
  554. return new Fraction(Math.round(places * Number(this["s"] * this["n"]) / Number(this["d"])), places);
  555. },
  556. /**
  557. * Check if two rational numbers are divisible
  558. *
  559. * Ex: new Fraction(19.6).divisible(1.5);
  560. */
  561. "divisible": function(a, b) {
  562. parse(a, b);
  563. return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
  564. },
  565. /**
  566. * Returns a decimal representation of the fraction
  567. *
  568. * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
  569. **/
  570. 'valueOf': function() {
  571. // Best we can do so far
  572. return Number(this["s"] * this["n"]) / Number(this["d"]);
  573. },
  574. /**
  575. * Creates a string representation of a fraction with all digits
  576. *
  577. * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
  578. **/
  579. 'toString': function(dec) {
  580. let g;
  581. let N = this["n"];
  582. let D = this["d"];
  583. dec = dec || 15; // 15 = decimal places when no repitation
  584. let cycLen = cycleLen(N, D); // Cycle length
  585. let cycOff = cycleStart(N, D, cycLen); // Cycle start
  586. let str = this['s'] < C_ZERO ? "-" : "";
  587. // Append integer part
  588. str += N / D | C_ZERO;
  589. N %= D;
  590. N *= C_TEN;
  591. if (N)
  592. str += ".";
  593. if (cycLen) {
  594. for (let i = cycOff; i--;) {
  595. str += N / D | C_ZERO;
  596. N %= D;
  597. N *= C_TEN;
  598. }
  599. str += "(";
  600. for (let i = cycLen; i--;) {
  601. str += N / D | C_ZERO;
  602. N %= D;
  603. N *= C_TEN;
  604. }
  605. str += ")";
  606. } else {
  607. for (let i = dec; N && i--;) {
  608. str += N / D | C_ZERO;
  609. N %= D;
  610. N *= C_TEN;
  611. }
  612. }
  613. return str;
  614. },
  615. /**
  616. * Returns a string-fraction representation of a Fraction object
  617. *
  618. * Ex: new Fraction("1.'3'").toFraction() => "4 1/3"
  619. **/
  620. 'toFraction': function(excludeWhole) {
  621. let n = this["n"];
  622. let d = this["d"];
  623. let str = this['s'] < C_ZERO ? "-" : "";
  624. if (d === C_ONE) {
  625. str += n;
  626. } else {
  627. let whole = n / d | C_ZERO;
  628. if (excludeWhole && whole > C_ZERO) {
  629. str += whole;
  630. str += " ";
  631. n %= d;
  632. }
  633. str += n;
  634. str += '/';
  635. str += d;
  636. }
  637. return str;
  638. },
  639. /**
  640. * Returns a latex representation of a Fraction object
  641. *
  642. * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
  643. **/
  644. 'toLatex': function(excludeWhole) {
  645. let n = this["n"];
  646. let d = this["d"];
  647. let str = this['s'] < C_ZERO ? "-" : "";
  648. if (d === C_ONE) {
  649. str += n;
  650. } else {
  651. let whole = n / d | C_ZERO;
  652. if (excludeWhole && whole > C_ZERO) {
  653. str += whole;
  654. n %= d;
  655. }
  656. str += "\\frac{";
  657. str += n;
  658. str += '}{';
  659. str += d;
  660. str += '}';
  661. }
  662. return str;
  663. },
  664. /**
  665. * Returns an array of continued fraction elements
  666. *
  667. * Ex: new Fraction("7/8").toContinued() => [0,1,7]
  668. */
  669. 'toContinued': function() {
  670. let a = this['n'];
  671. let b = this['d'];
  672. let res = [];
  673. do {
  674. res.push(a / b | C_ZERO);
  675. let t = a % b;
  676. a = b;
  677. b = t;
  678. } while (a !== C_ONE);
  679. return res;
  680. },
  681. "simplify": function(eps) {
  682. // First naive implementation, needs improvement
  683. let cont = this['abs']()['toContinued']();
  684. eps = eps || 0.001;
  685. function rec(a) {
  686. if (a.length === 1)
  687. return new Fraction(a[0]);
  688. return rec(a.slice(1))['inverse']()['add'](a[0]);
  689. }
  690. for (let i = 0; i < cont.length; i++) {
  691. let tmp = rec(cont.slice(0, i + 1));
  692. if (tmp['sub'](this['abs']())['abs']().valueOf() < eps) {
  693. return tmp['mul'](this['s']);
  694. }
  695. }
  696. return this;
  697. }
  698. };
  699. if (typeof define === "function" && define["amd"]) {
  700. define([], function() {
  701. return Fraction;
  702. });
  703. } else if (typeof exports === "object") {
  704. Object.defineProperty(exports, "__esModule", { 'value': true });
  705. Fraction['default'] = Fraction;
  706. Fraction['Fraction'] = Fraction;
  707. module['exports'] = Fraction;
  708. } else {
  709. root['Fraction'] = Fraction;
  710. }
  711. })(this);