"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.MessageStream = void 0; const stream_1 = require("stream"); const error_1 = require("../error"); const utils_1 = require("../utils"); const commands_1 = require("./commands"); const compression_1 = require("./wire_protocol/compression"); const constants_1 = require("./wire_protocol/constants"); const MESSAGE_HEADER_SIZE = 16; const COMPRESSION_DETAILS_SIZE = 9; // originalOpcode + uncompressedSize, compressorID const kDefaultMaxBsonMessageSize = 1024 * 1024 * 16 * 4; /** @internal */ const kBuffer = Symbol('buffer'); /** * A duplex stream that is capable of reading and writing raw wire protocol messages, with * support for optional compression * @internal */ class MessageStream extends stream_1.Duplex { constructor(options = {}) { super(options); this.maxBsonMessageSize = options.maxBsonMessageSize || kDefaultMaxBsonMessageSize; this[kBuffer] = new utils_1.BufferPool(); } _write(chunk, _, callback) { this[kBuffer].append(chunk); processIncomingData(this, callback); } _read( /* size */) { // NOTE: This implementation is empty because we explicitly push data to be read // when `writeMessage` is called. return; } writeCommand(command, operationDescription) { // TODO: agreed compressor should live in `StreamDescription` const compressorName = operationDescription && operationDescription.agreedCompressor ? operationDescription.agreedCompressor : 'none'; if (compressorName === 'none' || !canCompress(command)) { const data = command.toBin(); this.push(Array.isArray(data) ? Buffer.concat(data) : data); return; } // otherwise, compress the message const concatenatedOriginalCommandBuffer = Buffer.concat(command.toBin()); const messageToBeCompressed = concatenatedOriginalCommandBuffer.slice(MESSAGE_HEADER_SIZE); // Extract information needed for OP_COMPRESSED from the uncompressed message const originalCommandOpCode = concatenatedOriginalCommandBuffer.readInt32LE(12); // Compress the message body (0, compression_1.compress)({ options: operationDescription }, messageToBeCompressed, (err, compressedMessage) => { if (err || !compressedMessage) { operationDescription.cb(err); return; } // Create the msgHeader of OP_COMPRESSED const msgHeader = Buffer.alloc(MESSAGE_HEADER_SIZE); msgHeader.writeInt32LE(MESSAGE_HEADER_SIZE + COMPRESSION_DETAILS_SIZE + compressedMessage.length, 0); // messageLength msgHeader.writeInt32LE(command.requestId, 4); // requestID msgHeader.writeInt32LE(0, 8); // responseTo (zero) msgHeader.writeInt32LE(constants_1.OP_COMPRESSED, 12); // opCode // Create the compression details of OP_COMPRESSED const compressionDetails = Buffer.alloc(COMPRESSION_DETAILS_SIZE); compressionDetails.writeInt32LE(originalCommandOpCode, 0); // originalOpcode compressionDetails.writeInt32LE(messageToBeCompressed.length, 4); // Size of the uncompressed compressedMessage, excluding the MsgHeader compressionDetails.writeUInt8(compression_1.Compressor[compressorName], 8); // compressorID this.push(Buffer.concat([msgHeader, compressionDetails, compressedMessage])); }); } } exports.MessageStream = MessageStream; // Return whether a command contains an uncompressible command term // Will return true if command contains no uncompressible command terms function canCompress(command) { const commandDoc = command instanceof commands_1.Msg ? command.command : command.query; const commandName = Object.keys(commandDoc)[0]; return !compression_1.uncompressibleCommands.has(commandName); } function processIncomingData(stream, callback) { const buffer = stream[kBuffer]; if (buffer.length < 4) { callback(); return; } const sizeOfMessage = buffer.peek(4).readInt32LE(); if (sizeOfMessage < 0) { callback(new error_1.MongoParseError(`Invalid message size: ${sizeOfMessage}`)); return; } if (sizeOfMessage > stream.maxBsonMessageSize) { callback(new error_1.MongoParseError(`Invalid message size: ${sizeOfMessage}, max allowed: ${stream.maxBsonMessageSize}`)); return; } if (sizeOfMessage > buffer.length) { callback(); return; } const message = buffer.read(sizeOfMessage); const messageHeader = { length: message.readInt32LE(0), requestId: message.readInt32LE(4), responseTo: message.readInt32LE(8), opCode: message.readInt32LE(12) }; let ResponseType = messageHeader.opCode === constants_1.OP_MSG ? commands_1.BinMsg : commands_1.Response; if (messageHeader.opCode !== constants_1.OP_COMPRESSED) { const messageBody = message.slice(MESSAGE_HEADER_SIZE); stream.emit('message', new ResponseType(message, messageHeader, messageBody)); if (buffer.length >= 4) { processIncomingData(stream, callback); } else { callback(); } return; } messageHeader.fromCompressed = true; messageHeader.opCode = message.readInt32LE(MESSAGE_HEADER_SIZE); messageHeader.length = message.readInt32LE(MESSAGE_HEADER_SIZE + 4); const compressorID = message[MESSAGE_HEADER_SIZE + 8]; const compressedBuffer = message.slice(MESSAGE_HEADER_SIZE + 9); // recalculate based on wrapped opcode ResponseType = messageHeader.opCode === constants_1.OP_MSG ? commands_1.BinMsg : commands_1.Response; (0, compression_1.decompress)(compressorID, compressedBuffer, (err, messageBody) => { if (err || !messageBody) { callback(err); return; } if (messageBody.length !== messageHeader.length) { callback(new error_1.MongoDecompressionError('Message body and message header must be the same length')); return; } stream.emit('message', new ResponseType(message, messageHeader, messageBody)); if (buffer.length >= 4) { processIncomingData(stream, callback); } else { callback(); } }); } //# sourceMappingURL=message_stream.js.map